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Abstract

Data augmentation is a popular pre-processing
trick to improve generalization accuracy. It is
believed that by processing distorted inputs in tan-
dem with the original instances, the model learns
a more robust set of features which are shared
across the inputs. However, it is unclear if that is
the case. In this work, we take a Domain General-
ization viewpoint of augmentation based methods.
This new perspective allowed for probing overfit
and delineating avenues for improvement. Our ex-
ploration with state-of-art augmentation method
provides evidence that the learned representations
are not as robust even towards distortions used
during training. This suggests evidence for the
untapped potential of augmented examples.

1. Introduction
Contemporary learning algorithms demonstrate strong per-
formance, even surpassing humans at times, when training
and testing under independent and identically distributed
(iid) assumption. Notwithstanding performance under iid
settings, they are far from human level robustness when
evaluated under data shifts (Geirhos et al., 2018; Hendrycks
& Dietterich, 2019; Mu & Gilmer, 2019). This problem
is of central focus in learning distributionally robust mod-
els Hendrycks et al. (2019). While the related problem of
robustness to imperceptible adversarial examples has re-
ceived much larger interest Chakraborty et al. (2018); there
has been an increasing push toward expanding the definition
of robustness to include naturally occurring corruptions (En-
gstrom et al., 2019). This is especially so because best
defenses against, the narrow focused, adversarial examples
does much worse with robustness to natural corruptions.

There is a growing interest in building systems with better
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out-of-domain generalization performance also called Dis-
tributional Robustness (DR). DR is pursued under various
fronts: (a) imposing inductive biases that penalize spurious
correlations more (Wang et al., 2019) (b) through employ-
ing augmentation or optimization techniques to weed out
known data-overfitting features of the dataset (Sagawa*
et al., 2020; Geirhos et al., 2019) (c) general dataset-agnostic
data augmentation (Hendrycks et al., 2019; Rusak et al.,
2020). Arguably, general augmentation methods are more
scalable. Robustness through general augmentation is the
problem of our interest in this work.

Due to different manifestations of the DR problem, the
research in this direction is somewhat fragmented. The ob-
jective of robustness to domain shifts is the common theme
in domain generalization (Shankar et al., 2018; Carlucci
et al., 2019; Piratla et al., 2020), distributional robustness
(Hendrycks et al., 2019; Rusak et al., 2020), identifying and
mitigating dataset biases (Gururangan et al., 2018). DR is a
general version of the Domain Generalization (DG) prob-
lem. DG functions under the setting where the train data
is drawn from multiple sources along with annotation of
source id for each example with the objective of better gen-
eralization to unseen domains. Difference between DG and
DR are superficial, the following assumptions of former are
relaxed in the latter (1) the train data does not necessarily
be pooled from multiple sources (2) annotation of the do-
main label per example could be missing. In this work, we
borrow lessons from the DG line of work to emphasize the
untapped potential of augmentations directed at improving
distribution robustness.

Data augmentation technique is widely adopted for image
preprocessing and has recently been shown to improve out-
of-domain robustness (Hendrycks et al., 2019). It is, how-
ever, unclear how the augmented examples interact with the
clean examples. Training under data augmentation resem-
bles multi-source training of DG. An ideal DG algorithm
exploits the train time domain variation so as to learn a
hypothesis that is better equipped at generalizing to new
domains. The Expected Risk Minimization (ERM) baseline
on the other hand does not attend to the domain boundaries
and yields bad domain-shift robustness owing to overfit
on the seen domains. We want to draw attention to the
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under-explored utility of domain generalization methods for
better robustness. The prime focus of this work is to explore
augmentation techniques in the context of out-of-domain
robustness. Although some of our claims may also carry to
generalization error, it is beyond the scope of this work.

In our exposition, we use domain, augmentation and input
distribution interchangeably. Data augmentations are drawn
from label consistent transformations of the clean examples,
the introduced data-shift in the train data from augmenta-
tions is no different from what is usually referred to as the
domain in the DG literature.

We make the following contributions.

• Untapped potential: We show that the standard
augmentation (including state-of-art) methods under-
utilize augmented examples by over-fitting on them.

• Future direction: We note that there is a broad scope
for improving augmentations for even better robustness
and conclude with a discussion of future line of work
that exploit the observed patterns of overfit.

2. Untapped Potential of Augmentations
In this section, we provide evidence of augmentation overfit
by systematically exploring a recent state-of-art augmen-
tation method. We employ generalization measures from
domain generalization literature to investigate overfit and
to identify possible avenues for improvement. As a case
study, we use models trained with AugMix (Hendrycks et al.,
2019) when trained on CIFAR-10, CIFAR-100 and Ima-
geNet across different network architectures.

Augmentation is a standard trick employed to ameliorate
over-fitting, dominantly in image applications. In the ex-
treme case of catastrophic over-fitting, the augmented ex-
amples cannot help generalization of the original examples.
On the other extreme, in the ideal scenario, we expect the
algorithm to draw what is common between the clean and
augmented examples without having to employ any specific
features for either clean or augmented data. Vanilla aug-
mentation need not lead to the ideal scenario of learning
common features between clean and augmented inputs. For
example, Vasiljevic et al. (2016) report that train-time blur
augmentations do not generalize to unseen blurs. Further-
more multiple DG studies (Motiian et al., 2017; Ghifary
et al., 2015a) show that train data containing instances under
multiple rotations does not generalize to unseen rotations.
In practice, algorithms fall in between the two extremes
of catastrophic over-fitting and perfect parameter sharing,
demonstrating domain overfit of various degree.

We pose the question on how much feature sharing occurs
between the clean and augmented examples with AugMix.
We probe domain overfit using measures borrowed from

the DG literature. In section 2.1, we probe how domain in-
variant are the representations obtained from various layers.
Section 2.2 employs a recent common-specific decompo-
sition strategy proposed in Piratla et al. (2020) to identify
any overfitting components in the model weights. Finally
in section 2.3, we make a more controlled evaluation of the
generalization to augmentations of varying severity levels.

2.1. Domain Divergence Measure

Domain overfit can be qualitatively measured by looking
at how transferable the parameters are between the train
domains. The seminal paper on domain adaptation: Ben-
David et al. (2006), proved an upper bound on generalization
gap between any two domains in terms of a divergence mea-
sure between them. Equation 1 provides this measure for a
given hypothesis classH and source and target distributions:
S, T with their respective populations: n, n′.

dH(S, T ) =2(1−minη∈H{
1

n
Σni=1I[η(xi) = 0]

+
1

n′
Σn+n′i=n+1I[η(xi) = 1]}) (1)

Intuitively, the domain divergence would be low when the
hypothesis class induced by the learned representations do
not allow for domain prediction i.e. the representations
should be domain invariant. Since it is hard to compute the
divergence measure exactly, a proxy measure, accuracy of
a trained discriminator proposed in Ganin et al. (2016), is
adopted. We train a domain discriminator to discriminate
augmented examples from clean examples. Higher the ac-
curacy of the domain discriminator, greater is the scope of
domain overfit.

We probe for domain invariance of the representation
learned by AugMix on CIFAR and ImageNet datasets. We
used representations from two different layers: the penul-
timate and antepenultimate layers, penultimate layer is the
layer before the softmax layer. We use the representa-
tions obtained from these layers for clean (xc) and aug-
mented (xa) examples along with their domain assignment:⋃
i{xci, 0}∪ {xsi, 1} as the input data. A linear discrimina-

tor is then train on 40,000 examples with equal proportion
of clean and augmented images. If the model learns gener-
alizable common features, then information related to the
augmentation’s distortion should be minimal. On the other
hand if the model relies on domain specific feature, that
information will be present in the representation layers of
the model. The same information can be used to correctly
identify the domain of the input sample. As such the higher
is the accuracy of a discriminator which can distinguish
samples from the domains, the greater is the reliance of the
model on non-robust domain specific features.
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Table 1 shows the discriminator’s performance for a range
of models trained with AugMix. We also report discrimi-
nation accuracy on unseen test examples that are similarly
collected as train. Since the discriminator is a simple linear
classifier, any domain predictive capacity even under such
favorable conditions is indicative of a strong overfit. Note
how the domain predictive information is erased only in the
penultimate layer. The prevalence of domain identifying
information up until this layer is indicative of shallow pa-
rameter sharing between augmentations and clean examples.
This highlights the need for measures that promote higher
parameter sharing between augmentations and original in-
stances.

2.2. Common vs Specialized Components of the
Classifier

When training on multi-domain data, we desire to retain
only the components of the classifier that rely on common
features. To better understand the intuition, consider the
illustrative example of water-bird vs land-bird classifica-
tion (Sagawa* et al., 2020). The train data can be parti-
tioned in to four groups: water-birds with water and land
background, land birds with water and land background. We
make the practical assumption that the train data is domi-
nated with water-birds (land-birds) with water (land) back-
ground. Since it is arguably simpler to classify based on the
background, the standard (such as ERM) algorithms pick on
features (which is background here) that may not generalize
to minority groups: water-birds (land-birds) on land (water).
Piratla et al. (2020) also argues that the domain-specific com-
ponents of the classifier as a cause for bad out-of-domain
generalization error. More interestingly, their proposed solu-
tion of weeding out the domain specific component readily
translated to better out-of-distribution robustness.

In order to study if AugMix suffers of a similar problem
from domain specific components, we employ the common-
specific decomposition on the classification parameters We
obtain penultimate layer representations for a randomly sam-
pled 20,000 examples of original and augmented images
each. We then obtain optimal linear content-label. classi-
fier individually for clean and augmented instances. These
are denoted as w∗o , w

∗
a respectively. We are interested in

decomposing these parameters in to a linear combination of
common (wc) and domain-varying (ws) component accom-
panied by domain-specific combination parameter (γa, γs).
This requires solving the following constrained problem
shown in Equation block 2 1. .

1See theorem 1 of Piratla et al. (2020) for the decomposition
algorithm

w∗o = wc + γows

w∗a = wc + γaws

wc ⊥ ws (2)

Note from the decomposition problem that (1) contribution
of the common componentwc to each ofw∗o , w

∗
a is the same,

and (2) the contribution of specific component ws varies. In
the ideal case when the representation contains only features
of consistent label correlations between domains, then the
domain specific components (γaws, γcws) are diminutive
compared to the common component (wc). On the other
hand when the representations contain features that favour
only one of the two domains, it manifests in strong domain
specific components.

In Table 2, we report the ratio of norms of specific and
common components over a range of models trained with
AugMix, expression for the reported measure shown below:

‖[γows, γaws]‖
‖[wc, wc]‖

In the ideal case the ratio is expected to be very close to
zero as tn specific components are negligible. However,
for a range of AugMix trained models, the ratio is close to
one implying that the specific components dominate. This
strongly suggests scope for better robustness adding further
to the case of untapped potential of augmentations.

2.3. Controlled Evaluation of Distributional
Robustness

In this section, inspired from Geirhos et al. (2018); Vasil-
jevic et al. (2016), we make a controlled evaluation of the
AugMix trained models in order to objectively measure do-
main sensitivity. AugMix allows for several knobs on the
train time augmentations; Of our particular interest are (1)
mixing coefficient that combines the augmented example
with the original example (2) severity level of distortions for
input transformation. We make a more modest evaluation on
the test set using only the seen distortions but with differing
severity and with or without mixing with clean examples.

Table 3 summarizes our findings. Without mixing means we
evaluate on the augmented example directly. AugMix draws
several samples from the convex combination of clean and
distorted examples, and thereby we expect generalization to
any convex combination of clean and augmented examples
including either extremes. However, it is surprising that we
found consistent drop in accuracy with the default severity
level of 3 and when evaluated on an endpoint: distorted
input. Also, we draw attention to the drop in accuracy when
using severity level of 5 just outside of the train time value
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CIFAR-10 CIFAR-100 ImageNet

Layer
Arch

AC WRN AC WRN ResNet-50

PL 50.2 (52.8) 51.9 (52.3) 52.3 (52.1) 51.0 (50.8) 54.5 (57.4)
APL 100 (100) 85.5 (91.8) 100 (100) 84.8 (86.6) 76.8 (84.0)

Table 1. Test and train domain discrimination accuracy (train accuracy shown in brackets) on CIFAR-10, CIFAR-100 and ImageNet. PL
and APL stands for penultimate and antepenultimate layers. AC and WRN expand to AllConv and WideResNet respectively.

Dataset
Arch

AC WRN

CIFAR-10 0.6 3.3
CIFAR-100 0.8 1.4

Table 2. Ratio of norm of specific components to common compo-
nents, smaller the better, for CIFAR-10, CIFAR-100 with AllConv
(AC) and WideResNet (WRN) architecture.

of 3 2. These observations highlight the fragile robustness
of AugMix.

CIFAR-100 CIFAR-10
Mix wo Mix Mix wo Mix

s=0 71.2 92.6
s=3 69.9 (0.1) 65.4 (0.3) 91.8 (0.1) 88.9 (0.1)
s=5 66.8 (0.3) 61.4 (0.4) 90.1 (0.2) 87 (0.1)

Table 3. Classification accuracy of AugMix trained on CIFAR-100
and CIFAR-10 when evaluated on seen distortions of varying sever-
ity level (rows) and with or without mixing with clean example.

3. Related Work
Domain Generalization Domain generalization refers to
zero-shot adaptation to examples from unseen new domains.
Building on Ben-David et al. (2006) insight; a plethora of
methods based on minimizing some form of domain diver-
gence have been proposed (Ganin et al., 2016; Ghifary et al.,
2015b). Other methods for domain generalization include
parameter decomposition (Khosla et al., 2012; Piratla et al.,
2020), domain adversarial augmentation (Shankar et al.,
2018) and meta-learning (Balaji et al., 2018; Li et al., 2018).

Data Augmentation Researchers have developed various
techniques to create the augmented data samples. These
include random erasures (Zhong et al., 2020), random re-
placement (Takahashi et al., 2018), noise patching (Lopes
et al., 2019). and image interpolation (Tokozume et al.,
2018). Both the works of Madry et al. (2018) and Shankar
et al. (2018) are versions of creating augmented examples
using input gradient. Xie et al. (2019) employed data aug-

2Augmix severity scale linearly from 0 to 10

mentation in semi-supervised teacher student framework.

4. Discussion
Vanilla training combining clean and distorted inputs are
not necessarily enough to ensure robustness. Deep neural
networks can learn unexpected properties from the the train-
ing distortions and overfit on them (Geirhos et al., 2019).
(Hendrycks et al., 2019) proposed that by using stochastic
methods to create a non-fixed number of distortions will
mitigate the issue, by forcing the model to learn robust
features.

Our experiments suggest that this mitigation is partial and
overfitting is still an issue. The layer activations retain a
significant information about whether the input is a clean or
distorted input. This suggests that the model is not necessar-
ily robust to out of domain distortion. This is highlighted
by the deterioration of model performance on augmented
inputs generated from slightly different distortion sampling
parameters. Furthermore the model retains sensitivity to
training parameters. The mixing operation used in Augmix
would lead one to expect that the model is robust on the
simplex between clean data and its augmentations. However
contrary to expectations even on the training augmentations,
one sees significant difference between different mixing pat-
terns. The fact that the models are not as robust as believed,
suggests there is still significant scope of improvement from
the way augmentations are currently utilized.

We envision a future line of work targeting the overfit pat-
terns which have been observed in this work to be of value.
The presence of common and specific components in the rep-
resentations can be mitigated by adopting methods from Pi-
ratla et al. (2020); Sanyal et al. (2020). Parameter sharing
can be further promoted through a study of domain invariant
networks (Ganin et al., 2016).
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